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ABSTRACT

SystemVerilog has been accepted as an IEEE standard for which all the major CAD and 1P
vendors have announced support. Many observers view it as becoming a widely accepted
industry standard verification language.

It is now possible to build object-oriented and constrained random features into a verification
environment without being locked into using one proprietary tool to run that environment. Many
users previously deterred from committing to a proprietary solution, along with users of existing
proprietary solutions, are seeing benefits in converting their environments to the new standard.

This paper shows how a SystemVerilog test environment with re-usable components can be
quickly set up and used to comprehensively test a USB Host Controller sub-system with a
mixture of directed and constrained random test cases. The environment has been implemented
to replace an existing VHDL testbench by a user with no previous SystemVerilog, OpenVera or e
language experience. The paper describes a Synopsys Reference Verification Methodology
(RVM) implementation, a first step towards the use of the ARM/Synopsys Verification
Methodology Manual (VMM).

A VHDL USB 2.0 Host Controller sub-system consisting of USB EHCI and OHCI AHB
masters, DMA interface to embedded DRAM, buffering and arbitration logic, will be used as an
example.

Readers will learn about the basic concepts of SystemVerilog constrained random testing and
how to quickly construct a test environment and simulate using VCS 2005.06. The paper also
describes the use of SVA assertions to complement functional coverage results for the system.
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1.0 Introduction

This paper documents an investigation into the feasibility and advantages of switching from
using a directed VHDL/Verilog based verification flow to using a SystemVerilog constrained
random environment. For the purposes of the investigation a USB 2.0 Host Sub-System in
VHDL was selected as the Device Under Test (DUT). The device was previously verified by S3
using a traditional VHDL testbench running directed testcases and worked 100% first time right
in Silicon on an image processing System on Chip (SoC) [1]. This was considered a good
candidate for the investigation as a number of common SoC elements are present in the design
including: two AHB interfaces, a customized Leon processor bus interface, arbitration logic and
a DMA interface to embedded DRAM.

The objective of the investigation was to develop a SystemVerilog environment to cover the
existing verification plan for the device and in particular to determine:
1. Is there a large ramp up required for our verification engineers in switching to
SystemVerilog?
2. If our existing verification flow is resulting in first time right silicon is there a significant
advantage in switching to a constrained random flow (e.g. time-saving)?

3. Are existing CAD tools mature enough to support the SystemVerilog features we require?
4. Is co-simulation with existing VHDL designs an issue?
5. How important to constrained random verification is having a well defined verification

methodology ?

2.0 The USB 2.0 Host Controller Sub-System (DUT)
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Figure 1 — USB Enabled SoC
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A typical SoC with USB 2.0 host and device connectivity including on-chip PHY is shown in
Figure 1. The USB host and device can be configured by a Leon CPU [1] through a low-speed
CPU peripheral bus. USB data traffic, with rates up of to 480 Mbs in USB 2.0 High Speed mode,
can be DMAed into the on-chip embedded DRAM via a separate high bandwidth DRAM data
bus. The DRAM arbiter provides guaranteed quality of service in terms of bandwidth and access
latency to all its requestors. For the USB connections this means that the SoC should never
become a bottleneck as it will always be able to sink and source USB data at the rate of the
external USB networks.
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Figure 2 — USB Sub-System Block Diagram

The USB Controller Host Sub-System or UHU, the subject of this paper, is shown in more detail
in Figure 2. The host core in the UHU, the ehci_ohci, is a USB2.0 compliant 3rd party Verilog IP
core from Synopsys. It contains an Enhanced Host Controller Interface (EHCI) controller and an
Open Host Controller Interface (OHCI) controller. The EHCI controller is responsible for all
High Speed (HS) USB traffic. The OHCI controller is responsible for all Full Speed (FS) and
Low Speed (LS) USB traffic. The multi-port PHY provides three downstream USB ports for the
UHU.
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In addition to the ehci_ohci host controller core the UHU also contains
e aconnection to the CPU peripheral bus
¢ (CPU configuration registers in uhu_cpu_regs_cpu
e an AHB bridge to the ehci_ohci allowing its registers to be also configured by the CPU
e a DMA manager, uhu_dma, connecting the ehci_ohci via a second AHB bridge to the
high speed DRAM bus or DIU.

The CPU interface is the master on its AHB interface to the ehci_ohci whereas the ehci_ohci is
the master on the AHB interface to the DRAM DMA logic in uhu_dma.

2.1.1 Verification Strategy

The verification of the UHU is split into 2 parts:
1. Exhaustive testing of the UHU CPU configuration and DRAM DMA logic by replacing
the ehci_ohci by AHB master/slave BFMs.
2. Complete testing of the UHU including the USB ehci_ohci host controller cores.

This two-step verification strategy was adopted because exhaustive testing using the complete
UHU is difficult since the USB host functionality is partitioned between the hardware UHU and
software EHCI/OHCI Host Controller Driver stacks. The development effort for these Host
Controller Drivers is considerable and the CPU MIPs requirements large so only simplified
drivers were employed. With the simplified host controller drivers it was very difficult to hit all
the DMA corner cases so separate testing of the DMA logic was employed. This paper describes
the work required to verify the UHU DMA logic with the EHCI/OHCI cores replaced by AHB
master/slave BEMs.

2.1.2 Functionality to be Tested

The subset of functionality to be tested as part of this investigation of SystemVerilog is shown in
Table 1.

Table 1 —- UHU DMA logic Verification Requirements

Point of
Functionality Verification Requirement

Read/Write Burst sizes
FUHU.1.0 Verify read operation for different AHB burst sizes (1 -1024) for OHCI and EHCI masters.
FUHU.1.1 Verify write operation for different AHB burst sizes (1 -1024) for OHCI and EHCI masters.
FUHU.1.2 Verify different combinations of reads and writes i.e. read/read, read/write, write/write,

write/read combinations.
Arbitration

FUHU.2.0 | Verify AHB arbitration fairness between OHCI and EHCI masters.

Read/Write Coherency
FUHU.3.0 | Verify read/write coherency for both OHCI and EHCI masters.

AHB Split Response

FUHU 4.0 Verify read operation using AHB split responses for OHCI and EHCI slaves.
Verify reads split on crossing 256-bit word boundary.

FUHUA4.1 Verify write operation using AHB split responses for OHCI and EHCI slaves.
Verify writes split on crossing 256-bit word boundary.
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Interrupt Coherency

FUHU.5.0 Verify for core interrupts any writes in local UHU buffer need to be flushed before interrupt is
generated and no new transactions allowed until interrupt is generated.

FUHU.5.1 Verify that any ongoing AHB write transfer is split when a core interrupt is generated and the
split is completed when the buffer is flushed and the interrupt has been generated.

These verification requirements need some further explanation of the UHU functionality:

e Read/write burst sizes (F UHU.1.0/1)
The USB maximum packet size can be up to 1024 bytes so the EHCI/OHCI cores may
read or write packets in the range 1-1024 bytes.

e Arbitration (F UHU.2.0)
Both EHCI and OHCI are separate AHB masters to the DMA logic with a round-robin
arbitration policy being implemented. Arbitration is won by the EHCI by default when
there have been no previous requests.

e Read/write coherency (F UHU.3.0)
Read/write coherency is extremely important i.e. a read operation following a write
operation to the same DRAM address must always read the data just written.

e AHB Split Response (F UHU.4.0/1)
In order to prevent long EHCI bursts locking out OHCI DRAM access and vice-versa
AHB split response functionality has been implemented. When an AHB burst crosses a
256-bit DRAM word boundary (the embedded DRAM word-size is 256-bits) the AHB
access is split and an access from another master is allowed. In this way if both EHCI and
OHCI request accesses of long lengths then the resulting accesses will be alternating
bursts of 8x32-bit words or 256-bits by each of the EHCI and OHCI masters.

e Interrupt coherency (F UHU.5.0/1)
Interrupt coherency must also be guaranteed i.e. an interrupt must not be generated in the
case of a USB IN transfer until the data has actually been written into the DRAM and
therefore can be safely read by the CPU.

3.0 The Existing VHDL Verification Environment

3.1 Flow Overview

The S3 verification methodology used to verify the device involved firstly the creation of a
verification plan. This plan in turn contained tables of Verification Requirements such as those
shown in Table 1 - bullet point lists of functionality to be covered by the verification test suite. A
DUT audit by the verification team was used to generate the verification requirements. This audit
took as input: the block specification, relevant standards, available verification IP, input from the
block designer and the S3 block verification check list. The resulting requirements went through
iterations of review with a view to capturing all the corner case operations where a non-
conformance might escape detection by the verification suite.

Functional coverage was measured manually by review of the verification requirements versus

the test suite. This was flagged as being very time consuming and was highlighted as an area
where automation using assertions for coverage calculation could improve efficiency. Full

SNUG Europe 2006 7 VHDL to SystemVerilog




coverage was considered as met when all verification requirements were covered by the test suite
and statement code coverage was 100% (our goal was 100% branch and statement code coverage
but branch coverage was not available with the version of the code coverage tool we were using).

Directed tests were written to cover the functionality described in the verification requirements.
In all cases individual tests had to be written to hit the verification requirements, this again was a
bottleneck in the process of closing out functional coverage. The directed tests were very
procedural-like defining lists of CPU BFM and AHB BFM operations. All tests were self-
checking with AHB transactions checked by an AHB monitor. Some limited randomization was
used in the generation of address and data values and delays. A total of 20 separate directed tests
were required to completely verify the UHU functionality listed in Table 1. Developing these
tests took a considerable amount of effort although the same testbench structure was used for all
tests.

3.2 Directed VHDL Verification Environment Overview

3.2.1 USB DMA Logic VHDL Verification Environment

Figure 3 — VHDL UHU DMA Logic Verification Environment

The VHDL verification environment that was used is shown in Figure 3. This comprises the
DUT (UHU) together with a CPU BFM, actual RTL for the DRAM arbiter (DIU) and AHB
master/slave BFM’s replacing the EHCI/OHCI cores. This environment facilitated extensive
directed testing of the UHU DMA and CPU interface logic.

3.2.2 USB Top-Level Verification Environment

As noted in Section 2.1.1, a second verification phase included complete testing of the UHU
including the USB ehci_ohci host controller cores. The testbench is shown in Figure 4. The UHU
requires a very complex device driver. The Synopsys task driven verification environment used
to test the ehci_ohci core standalone was modified to work at UHU level. This includes a USB
device model supplied by Synopsys. The testbench controls the driver models by means of
transaction-level Verilog task calls. Because of the limited functionality of the device driver, and
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also the limited functional coverage of the top-level testcases, it was necessary to exhaustively
test the USB DMA buffer logic separately.

by

Figure 4 - VHDL UHU Verification Environment
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4.0 The SystemVerilog Verification Environment
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Figure 5 — RVM Testbench Structure

The verification environment developed to allow SystemVerilog testing of the UHU is shown in
Figure 6. This environment follows the conventions of the Synopsys RVM (Reference
Verification Methodology) SystemVerilog methodology. The RVM is a structured methodology
for object-oriented constrained random verification using SystemVerilog. The full RVM makes
use of the ARM/Synopsys Verification Methodology Manual (VMM) [2]. The RVM contains
guidelines, coding styles and base classes. Here we implement an RVM-lite methodology which
does not use the RVM base-classes. RVM-lite is a first step to the implementation of the full
RVM. The RVM emphasizes a functional coverage driven verification methodology which
matches our use of Verification Requirements

A generic RVM testbench structure is shown in Figure 5 [3]. Testing is performed at the
transaction level using a transaction generator called by the testcase, a checker which identifies
transactions from the DUT, and a scoreboard to check their correctness. Drivers and monitors
map the transactions to the pin-level of the DUT. Assertions check the low-level signaling of the
DUT for correct behaviour. The SystemVerilog test environment developed for the UHU follows
this RVM testbench structure.
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4.1 SystemVerilog UHU Verification Environment Overview
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Figure 6 — SystemVerilog UHU Verification Environment

The SystemVerilog UHU verification environment in Figure 6 shows the transaction generators
(1 Leon and 2 AHB), read and write DRAM monitors and a scoreboard. The scoreboard checks
that transactions on the AHB side result in correct DRAM reads and writes on the DRAM
interface. SystemVerilog mailboxes are used to interface the generators with their drivers and to
interface to the scoreboard. SystemVerilog interfaces are used at the DUT pin level for the AHB,
Leon, interrupt and DRAM read and write pin I/O. The environment is described in more detail
in the following sections.

4.1.1 AHB Generator

The AHB Generator creates bursts of AHB transactions. There are 2 AHB generators — 1 for the
EHCI and 1 for the OHCI. The ahb_trans class is shown below.
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parameter AHB_ADDR_WIDTH = 32;
typedef bit [AHB_ADDR_WIDTH-1:0] ahb_addr_t;
parameter AHB_DATA_WIDTH = 32;
typedef bit [AHB_DATA_WIDTH-1:0] ahb_data_t;
typedef enum {SINGLE, INCR, WRAP4, INCR4, WRAPS, INCR8, WRAP16, INCR16} ahb_burst_e;
typedef enum { AHB_READ, AHB_WRITE, AHB_IDLE} ahb_trans_e;
class ahb_trans;
rand ahb_addr_t addr;
rand ahb_data_t data;
rand ahb_burst_e burst;
rand ahb_trans_e transaction;
rand integer burstlength;

endfunction: copy

endclass

The AHB transactions are all completely random i.e.

Random transaction type i.e. AHB READ, WRITE or IDLE
random 32-bit address

random 32-bit data

random burst length

random burst type

O O O O O

Once randomly generated the bursts are posted by an AHB generator to a gen2mas_e/ohci
mailbox where they will be read by the corresponding AHB master. The AHB generator also
posts the count of the total number of AHB words generated to the scoreboard via a
gen2schb_e/ohci mailbox. This is used by the scoreboard to ensure checking has been performed
on all the generated AHB words.

4.1.2 Object-oriented Class Structure

The AHB Generator, similar to the other testbench components, follows an object-oriented class
structure:
e Objects are instantiated (actually handles to objects are instantiated) — in this case a
random AHB transaction and mailboxes.
e Methods are provided to perform operations on the objects.
e A constructor function new performs initialization by allocating memory for the objects
and initializing variables and connectivity e.g. of the mailboxes.
e A task main has a loop which generates AHB transactions and posts them to the mailbox.

The classes are self contained — they define both the data objects and the operations that can be
performed on them. This makes them highly portable and reusable in other verification
environments. These concepts seem new at first, from the background of directed VHDL and
Verilog verification, but are easy enough to grasp especially if one has had any prior exposure to
C++ or SystemC.
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endclass

class ahb_gen;

// Random AHB transaction
rand ahb_trans rand_tr;

//AHB Transaction mailbox

mailbox gen2mas, gen2scb;

// Constructor
function new(mailbox gen2mas, gen2scb, ...);

this.gen2mas = gen2mas;

this.gen2scb = gen2scb;

rand_tr = new;
endfunction

// Method aimed at generating transactions
task main();
while(!end_of_test())
begin
// Wait & Get a transaction
rand_tr = get_transaction();
gen2mas.put(rand_tr);
end // while (lend_of_test())
endtask

4.1.3 AHB Master

The AHB Master converts AHB READ, WRITE and IDLE transactions received via the
gen2mas_e/ohci mailbox into cycle accurate address, data and control signals on the ahb_if
interface connected to the DUT complying to the AHB protocol. SystemVerilog clocking blocks
are used in the interfaces to create explicit synchronous timing domains. The AHB Master also
posts the generated transactions into separate read and write mailboxes mas2scb_e/ohci_rd and
mas2scb_e/ohci_wr where they can be read by the scoreboard.

The master is a stripped down version of a full AHB master. Some points to note are:

The AHB master always implements an INCR burst type i.e. an incrementing burst of
indeterminate length. This is because we want to test bursts in the range 1 to 1024.
The test cases constrain the burst type to INCR.

A limitation of the AHB master used in this investigation is that it will only generate
32-bit word transactions. So we test bursts in the range 1 to 1024 32-bit words rather
than 1 to 1024 bytes but the principle remains the same.

The transfer type of the first access in a burst, the AHB htrans signal, is always
NONSEQ for the first transfer in a burst and SEQ for subsequent transfers.

The AHB Master is designed to handle AHB split transactions. The AHB arbiter in

the UHU will generate a split when
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boundary. Recall from Section 2.1.2 “Functionality to be tested” that this is intended
to allow equal access to the UHU for both EHCI and OHCI.

4.1.4 Leon Generator

The Leon generator is used to generate Leon READ and WRITE transactions to configure the
DUT and to read back status. The transactions are posted to a mailbox gen2mas_leon where they
can be read by the Leon Master. The leon_trans class is shown below.

parameter LEON_ADDR_WIDTH = 12;
typedef bit [LEON_ADDR_WIDTH-1:0] leon_addr_t;
parameter LEON_DATA_WIDTH = 32;
typedef bit [LEON_DATA_WIDTH-1:0] leon_data_t;
typedef enum {LEON_READ, LEON_WRITE, LEON_IDLE} leon_trans_e;
class leon_trans;
randc leon_addr_t addr;
rand leon_data_t data;
rand leon_trans_e transaction;

endfunction: copy
endclass

The Leon transaction address is defined as randc i.e. no values are repeated until all the values in
the range have been generated. The Leon addresses are constrained within the testcase to include
only the addresses of valid configuration registers. In the testcases we are only using Leon
WRITE transactions to configure the DUT i.e. we are not reading back status. The Leon
generator will generate Leon transactions until the maximum number of Leon transactions is
reached, typically set as the number of registers to be configured.

4.1.5 Leon Master

The Leon Master converts Leon transactions received via its genZmas_leon mailbox into cycle
accurate address, data and control signals on the leon_if interface according to the AMBA APB-
like CPU bus protocol used on the SoC.

4.1.6 DRAM Read and Write Monitors

Each DRAM monitor is a reactive transactor i.e. it responds to a request on the DRAM interface
with a randomized DRAM transaction. The dau_trans class is shown below.
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parameter DAU_ADDR_WIDTH = 22;
typedef bit [DAU_ADDR_WIDTH-1:5] dau_addr_t;
parameter DAU_DATA_WIDTH = 64;
typedef bit [DAU_DATA_WIDTH-1:0] dau_data_t;
typedef enum {DAU_READ, DAU_WRITE} dau_trans_e;
class dau_trans;

dau_addr_t addr;

dau_trans_e transaction;

rand dau_data_t data[4];

rand integer ack_delay;

endfunction: copy
endclass

As the DRAM data bus is 64-bits wide and each DRAM transaction is 256-bits (recall the
DRAM word size is 256-bits) the DRAM data element is a 4x64-bit array. The DRAM
transaction contains randomized data and a randomized acknowledge delay after which the data
and relevant control signals are driven on the DAU interface. The DRAM acknowledge delay is
constrained within the monitors as follows:

s = tr.randomize() with {ack_delay > 4, ack_delay < 256;};

The monitors post the DRAM transactions to the scoreboard mailboxes mon2scb for comparison
with the data that is returned on the AHB interface. The DRAM read and write protocols are
shown in Figure 7.

ax [ UL e MMM
RREQ —j variable WREQ _I

\I_I waon BT T ——"y

RACK Tabl

WACK Hvaﬁ_l
raok [ ] | - T BHEEE | woampes e [T AT T T
RVALID wevtemaskza [T I T 2 s 2T ]
DRAM_DATA[63:0] | [EABARARRRS T+ Ta2aT2Tal ] WYALID e
3 CYCLE EMBEDDED DRAM 3 CYCLE EMBEDDED DRAM

Figure 7 — DRAM Interface Protocol

4.1.7 Scoreboard

The scoreboard checks that writes on the AHB side are reflected as correct DRAM write accesses
and that reads on the DRAM side are reflected as correct AHB read accesses.

For writes the scoreboard stalls until a transaction has been posted in the mon2scb_dau_wr
mailbox by the DRAM write monitor. When a transaction appears it looks to match the
transaction address with the top-most element in each of the EHCI and OHCI master write-to-
scoreboard (mas2scb_e/ohci_wr) mailboxes. It does this by doing a try_peek into each of the
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AHB master write-to-scoreboard mailboxes. Once a matching transaction address has been found
then a get is performed and the data fields checked. Mismatches result in errors being generated.
For reads the scoreboard stalls until a transaction has been posted in one of the EHCI and OHCI
master read-to-scoreboard (mas2scb_e/ohci_rd) mailboxes. When a transaction appears it looks
to match the transaction address with the top-most element in the mon2scb_dau_rd mailbox
posted by the DRAM read monitor. It does this by doing a try_peek into the DRAM read monitor
to scoreboard mailbox. Again once a matching transaction address has been found then a get is
performed and the data fields checked. Mismatches result in errors being generated.

A check is also performed to ensure that all words have been transmitted/received correctly using
the count of the total number of AHB words generated read from the gen2scb_e/ohci mailboxes
as noted in Section 4.1.1.

4.1.8 Building the Environment

The complete verification environment shown in Figure 6 is built in an object-oriented manner
within the environment class.

class environment;
// Transactors
leon_gen gen_leon;
ahb_gen gen_ohci;

// constructor function

function new(... ... );
gen_leon  =new(... ... );
gen_ohci  =new(... ... );

virtual task test();

fork
gen_leon.main();
gen_ohci.main();
gen_ehci.main();
join

endtask: test
virtual task post_test();

fork
wait(gen_leon.ended.triggered);
wait(gen_ohci.ended.triggered);
wait(gen_ehci.ended.triggered);
wait(scb.ended.triggered);

join

endtask: post_test

task run();
pre_test();
test();
post_test();
endtask: run
endclass
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The environment class instantiates handles to all the individual verification components. It has a
constructor function which in turn calls the constructors of each component to initialize them and
contains the tasks to invoke the methods of the testcase components.

The AHB and Leon Generators loop generating transactions and posting them to mailboxes until
the number of transactions defined in the testcase have been generated. The AHB Masters, Leon
Master, DRAM monitors and scoreboards main() tasks consist of infinite loops which read or
write to mailboxes. The mailboxes are the glue between the various components — they block
when full or empty. The testcase is defined to end using the post_test() task when the generators
have ended and when the scoreboard has completed checking the number of AHB words created
by the generators.

4.1.9 Constructing the Testbench

The top-level module of the testbench instantiates both DUT and testcase with the connectivity
defined using interfaces. The testcase then instaniates the environment class, calls its constructor
and runs the test.

program automatic test(ahb_if aif0,aifl,leon_if lif, dau_rd_if drif, dau_wr_if dwif, int_if intif);
“include "env/env.sv" // Top level environment
environment the_env;

initial begin
the_env = new(aif0,aif1,lif drif,dwif);
the_env.run();
$finish;
end
endprogram

The 5 testcases themselves are each described in separate files i.e.
test_contention.sv

test_random.sv

test_coherent_ehci.sv

test_coherent_ohci.sv

test_interrupt.sv.

The testcases are compiled and run using the S3 Nanoflow make based design environment.

5.0 Defining the Testcases and Satisfying the Verification Requirements

The verification requirements of Table 1 are repeated in Table 2 but now cross-referenced against
the testcases and the functional coverage assertions used to measure them. The following
sections will discuss constraining the random testcases in order to hit these functional coverage
points and capturing the coverage using assertions.
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Table 2 - UHU DMA logic Verification Requirements with cross-referenced Testcases and Functional
Coverage

Point of Test
Functionality Verification Requirement Case Functional Coverage
Read/Write Burst sizes
FUHU.1.0 | Verify read operation for different AHB burst sizes All Covergroup ahb_cov
(1 -1024) for OHCI and EHCI masters.
F UHU.1.1 Verify write operation for different AHB burst sizes All Covergroup ahb_cov
(1 -1024) for OHCI and EHCI masters.
FUHU.1.2 | Verify different combinations of reads and writes All write_write_cv
i.e. read/read, read/write, write/write, write/read write_read_cv
combinations. read_write_cv
read_read_cv
Arbitration
FUHU.2.0 | Verify AHB arbitration fairness between OHCI and contention arb_cv
EHCI masters. arb_ehci_ohci_ehci_as
arb_ehci_ohci_ehci_cv
Read/Write Coherency
FUHU.3.0 | Verify read/write coherency for both OHCI and coherent_ohci ahb0_write_read_diu_as
EHCI masters. ahb0_write_read_diu_as
coherent_ehci ahbl_write_read_diu_as

ahbl_write_read_diu_as

AHB Split Response

FUHU.4.0 | Verify read operation using AHB split responses for contention read_ohci_split_as
OHCI and EHCI slaves. random read_ohci_split_cv
Verify reads split on crossing 256-bit word interrupt read_ehci_split_as
boundary. read_ehci_split_cv
FUHUA4.1 Verify write operation using AHB split responses contention write_ohci_split_as
for OHCI and EHCI slaves. random write_ohci_split_cv
Verify writes split on crossing 256-bit word interrupt write_ehci_split_as
boundary. write_ehci_split_cv
Interrupt Coherency
FUHU.5.0 | Verify for core interrupts any writes in local UHU interrupt ehci_int_as
buffer need to be flushed before interrupt is ehci_int_cv
generated and no new transactions allowed until ohci_int_as
interrupt is generated. ohci_int_cv
FUHU.S.1 Verify that any ongoing AHB write transfer is split interrupt smi_int_as
when a core interrupt is generated and the split is smi_int_cv
completed when the buffer is flushed and the ehci_int_write_phase0..7_cv
interrupt has been generated. ehci_int_read_phase0..7_cv

ohci_int_write_phase0..7_cv
ohci_int_read_phase0..7_cv
smi_int_write_phase0..7_cv
smi_int_read_phase0..7_cv

5.1 Constraining the Testcases

There are two general testcases - test_contention and test_random which exercise the majority of
the verification requirements. Three more specific testcases test_interrupt, test_coherent_ehci,
test_coherent_ohci target the specific interrupt and data coherency verification requirements.

The general approach is to add constraints to the completely randomized verification
environment in order to hit the verification requirements. Beyond adding extra constraints to
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each testcase the previously constructed verification environment is used in each testcase without
modification. This leads to great productivity gains when writing testcases.

5.1.1 Test_contention

This is a test where both AHB masters attempt AHB READ and AHB WRITE transactions at the
same time. The burst length of each transaction is in the range 1 to 1024.

To set up this testcase the AHB and Leon generators need to be suitably constrained. We have
done this by extending the AHB and Leon base classes within the testcase.

Class my_leon_gen extends the Leon generator class so that Leon is constrained to only write to
2 particular configuration register addresses (32'h1C, 32'h20) with data 32'h11. The 2 Leon
writes correspond to enabling AHB arbitration for both EHCI and OHCI (address 32°h1C) and
enabling DRAM access for both read and write transactions (32°h20). The extended
my_leon_gen class is shown below. As noted previously, the Leon address is randomized with
the randc function which cycles through each of the 2 addresses. This is a good example of a
random verification environment being constrained to produce directed testcase functionality.

class my_leon_gen extends leon_gen;

/I Constraints applied here
function leon_trans get_transaction();
int s;
rand_tr = new();
s = rand_tr.randomize() with {addr inside {32'h1C, 32'h20};transaction == LEON_WRITE; data == 32'h11;};
if (!s)
begin
$display("leon_trans::randomize failed");
$finish;
end
get_transaction = rand_tr;
endfunction
endclass: my_leon_gen

Class my_ahb_gen extends the AHB generator class so that the transactions are constrained to be
READs and WRITEs of burst lengths between 1 and 1024. The extended class is shown below.
The constraint on the upper address bits is to ensure the address is within the 20 Mbit range that
the USB host controller can process.
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class my_ahb_gen extends ahb_gen;

// Constraints applied here
function ahb_trans get_transaction();
int s;
rand_tr = new();
s = rand_tr.randomize() with {addr[31:22] == 10'b0100000000; burstlength > 0; burstlength < 1025;
burst == INCR; transaction inside { AHB_WRITE,AHB_READ};};
if (!s)
begin
$display("ahb_trans::randomize failed");
$finish;
end
get_transaction = rand_tr;
endfunction
endclass: my_ahb_gen

The testcase then instantiates and calls the constructors for the environment and the customized
generators. The constructor calls for each of the generators set the number of transactions to
generate for each. The environment run method is then called to start the testcase.

/I Top level environment
environment the_env;

// Instanciate the customized generators
my_leon_gen my_leon_generator;
my_ahb_gen my_ehci_generator, my_ohci_generator;

initial begin
// Instantiate the top level
the_env = new(aif0,aif1 lif,drif,dwif);

// Plug the new generators
my_leon_generator = new(the_env.gen2mas_leon, 2, 1);
the_env.gen_leon = my_leon_generator;

my_ehci_generator = new(the_env.gen2mas_ehci, 100, 1);
the_env.gen_ehci = my_ehci_generator;

my_ohci_generator = new(the_env.gen2mas_ohci, 100 1);
the_env.gen_ohci = my_ohci_generator;

// Kick off the test now
the_env.run()
$finish;

end

5.1.2 Test_ random

This testcase is identical to test_contention except the AHB generators create IDLE transactions
in addition to AHB READ and AHB WRITE transactions. The constraint in class my_ahb_gen
becomes

SNUG Europe 2006 20 VHDL to SystemVerilog



s = rand_tr.randomize() with {addr[31:22] == 10'b0100000000; burstlength > O; burstlength < 1025; burst ==
INCR; transaction inside {AHB_IDLE, AHB_WRITE,AHB_READ};};

Since the IDLE transactions are also generated with random burstlengths this testcase exercises
the DUT with varying IDLE gaps between AHB transactions.

5.1.3 Test_coherent_e/ohci

The read/write data coherency tests are constrained using SystemVerilog imply statements to
generate AHB_WRITE/AHB_READ transaction pairs with a fixed burst length of 8 to avoid
AHB SPLIT transactions. For each AHB_WRITE/AHB_READ transaction pair we expect to see
a DRAM write operation followed by a DRAM read operation in that order for coherency to be
maintained.

class my_ahb_gen extends ahb_gen;
int ahb_tr_cnt = 0;

/! Constructor

function new(mailbox gen2mas=null, gen2scb=null, int max_trans_cnt, bit verbose);
super.new(gen2mas, gen2scb, max_trans_cnt, verbose);

endfunction

/I Constraints applied here
function ahb_trans get_transaction();
int s;
rand_tr = new();
s = rand_tr.randomize() with
{
ahb_tr_cnt==0 -> {addr[31:22] == 10'b0100000000;
addr[4:0] == 5'b00000 ;
burstlength == 8; burst == INCR;
transaction == AHB_WRITE;
1
ahb_tr_cnt==1 -> {addr[31:22] == 10'b0100000000;
addr[4:0] == 5'b00000 ;
burstlength == 8; burst == INCR;
transaction == AHB_READ;
1
B
if (ahb_tr_cnt == 0) ahb_tr_cnt = 1; else ahb_tr_cnt = 0;
endfunction
endclass: my_ahb_gen

5.1.4 Test_interrupt

The interrupt test is similar to the test_contention but also generates core interrupt events to the
UHU DMA logic at random times.
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5.2 Capturing Functional Coverage using SystemVerilog Assertions

The verification requirements of Tables 1 and 2 were captured using SystemVerilog assertions.
Assertions are very good at capturing temporal relationships. A SystemVerilog covergroup was
also used for capturing the AHB burstlengths generated and ensuring that they were distributed
among various bins across the burstlength range of 1 to 1024. Cross coverage of the burstlength
bins against the transaction type (AHB_READ, AHB_WRITE) was used in order to satisfy the
verification requirements F UHU.1.0/2.0 of Tables 1 and 2.

Two examples of the use of assertions in capturing functional coverage of verification
requirements are explored here. Table 3 shows verification requirement F.UHU.4.0 for the case
of OHCI AHB Split response and verification requirements F UHU.5 for EHCI core interrupt
coherency.

Table 3 — Selected UHU DMA logic Verification Requirements

Point of Functional
Functionality Verification Requirement TestCase Coverage
AHB Split Response
FUHU.4.0 | Verify read operation using AHB split responses for OHCI slave. | contention | read_ohci_split_as
Verify reads split on crossing 256-bit word boundary. ‘fandom read_ohci_sp
interrupt
Interrupt Coherency
FUHU.5.0 | Verify for core interrupts any writes in local UHU buffer need to interrupt ehci_int_as
be flushed before interrupt is generated and no new transactions ehci_int_cv
allowed until interrupt is generated.
FUHU.5.1 Verify that any ongoing AHB write transfer is split when a core interrupt

interrupt is generated and the split is completed when the buffer is
flushed and the interrupt has been generated.

5.2.1 Example 1 - F.UHU.4.0 OHCI AHB READ Split Response

/lassertions to check AHB Split on crossing 256-bit word boundary (corresponds to change in address bit 5);
sequence ohci_cross_seq;

(CAHBO.haddr[5] != $past ( AHBO.haddr[5]);
endsequence

read_ohci_split_as : assert property (@ (posedge pclk)
$rose(C AHBO.hgrant) ##1 (C AHBO.htrans[1] == 1) and " AHBO.hwrite)
##[0:7] ohci_cross_seq l=>
##[0:$] “AHBO.hreq ##[0:2] C AHBO.hresp == 2'b11)) check_assert[0][6]++;
else check_assert[1][6]++;

read_ohci_split_cv : cover property (@ (posedge pclk)
$rose(C AHBO.hgrant) ##1 ((C AHBO.htrans[1] == 1) and " AHBO.hwrite)
##[0:7] ohci_cross_seq
##[0:$] “AHBO.hreq ##[0:2] C AHBO.hresp == 2'b11)) check_assert[2][6]++;

For this example a sequence is defined for crossing a 256-bit AHB address boundary which
corresponds to a change in AHB address bit 5. Then there are two properties - assert and cover
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which are checked throughout the simulation. With this design the AHB hgrant signal always
asserts 1 cycle before the start of the AHB READ or WRITE transaction.

The assert property is used as a checker to ensure that every occurrence of the antecedent (the
sequence before the “I=>"" implication operator) is followed by the sequence after the implication
operator. Here the antecedent corresponds to finding such a 256-bit address crossing within 8
cycles of identifying an AHB read response (we expect bursts of length 1 to 8 before a split). The
assert property then checks that an AHB Split response always follows CAHBO.hresp == 2'b11)
the antecedent and will give a message to the simulator log file in the case of a failure.

The cover property is used to monitor the number of times the complete sequence has occurred in
the simulation. The coverage is reported in the log file at the end of the simulation e.g. the
simulator coverage report for test_contention is shown below.

"hdl/top.v", 161: top.write_write_cv, 1526844 attempts, 7252 match, 0 vacuous match

"hdl/top.v", 162: top.write_read_cv, 1526844 attempts, 7253 match, O vacuous match

"hdl/top.v", 163: top.read_write_cv, 1526844 attempts, 6917 match, O vacuous match

"hdl/top.v", 164: top.read_read_cv, 1526844 attempts, 7113 match, O vacuous match

"hdl/top.v", 184: top.write_ohci_split_cv, 1526844 attempts, 3747 match, O vacuous match

"hdl/top.v", 186: top.write_ehci_split_cv, 1526844 attempts, 3285 match, 0 vacuous match

"hdl/top.v", 189: top.read_ohci_split_cv, 1526844 attempts, 3726 match, O vacuous match

"hdl/top.v", 191: top.read_ehci_split_cv, 1526844 attempts, 3468 match, 0 vacuous match
"tests/test_contention.sv", 146: top.tl.arb_cv, 1526844 attempts, 10 match, O vacuous match
"tests/test_contention.sv", 154: top.tl.arb_ehci_ohci_ehci_cv, 1526844 attempts, 467 match, 0 vacuous match

5.2.2 Example 2 - F UHU.S for EHCI Core Interrupt Coherency

A second example of the use of assertions for functional coverage is the testing of interrupt
coherency for the EHCI core interrupt to satisfy the verification requirements of Table 3. Here
again there are both assert and cover properties. These properties are checked if the signals
assert_ehci_int and cover_ehci_int are high and the DUT has not yet asserted its interrupt output
uhu_icu_irg. The signals assert_ehci_int and cover_ehci_int are asserted in the testbench when
an EHCI core interrupt occurs during an AHB WRITE. If these conditions are satisfied then the
sequence ehci_int_seq is checked to see whether it has occurred.

ehci_int_seq concisely describes the verification requirements that following a core interrupt
during an AHB WRITE the following sequence must occur

e an AHB Spliti.e. CAHBO.hresp == 2'b11),

e followed by a DRAM write i.e. a buffer flush (4 consecutive assertions of

uhu_diu_wvalid according to the DRAM write protocol of Figure 7) ,

e followed by the DUT asserting its interrupt output whu_icu_irq.
and that

¢ no AHB grant occurs until uhu_icu_irq assertion
i.e. no further AHB transactions are allowed until the buffer has been flushed and the interrupt
generated.
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/Icheck if external interrupt event and AHB write in progress that an AHB split occurs
ehci_int_as : assert property (@ (posedge top.pclk)

(assert_ehci_int && !top.intif.uhu_icu_irq) |->

ehci_int_seq) test_check_assert[0][0]++; else test_check_assert[1][0]++;

ehci_int_cv : cover property (@ (posedge top.pclk)
(cover_ehci_int && !top.intif.uhu_icu_irq)
##0 ehci_int_seq) test_check_assert[2][0]++;

sequence ehci_int_seq;
//AHB split followed by DIU write followed by uhu_icu_irq assertion
/ITAND no AHB grant occurs until uhu_icu_irq assertion
(CAHBO.hresp ==2'b11)

##1 top.intif.uhu_icu_irq)
and
(CAHBO.hresp == 2'b11)
##1 (I"AHBO.hgrant throughout !top.intif.uhu_icu_irq [*0:$])
##[1:$] top.intif.uhu_icu_irq
##[0:$] “AHBO.hgrant);
endsequence

##[1:$] top.dwrif.dau_cb.uhu_diu_wvalid ##1 top.dwrif.dau_cb.uhu_diu_wvalid [*3]
##1 (top.dwrif.dau_cb.uhu_diu_wvalid throughout !top.intif.uhu_icu_irq [*0:$])

5.3 Reporting the Results

In addition to reporting assertion failures and coverage information to log files the Synopsys
Unified Report Generator can collate the functional coverage results across multiple testcases
and generate html reports. These reports can also include code-coverage results as well as

functional coverage. An example is shown in Figure 8.

The reader will have noticed the presence of action blocks on both the assert and cover
statements of Section 5.2. These capture the number of times an assertion has succeeded or failed
and the number of times a coverage point has been hit. At the end of the test ERROR messages
(and corresponding INFO messages) are output to indicate if an assertion failed or if the assertion

and coverage points were never exercised.

INFO COVERAGE: Global Coverage #0 exercised 7252 times
INFO COVERAGE: Global Coverage #1 exercised 7253 times
INFO COVERAGE: Global Coverage #2 exercised 6917 times
INFO COVERAGE: Global Coverage #3 exercised 7113 times

INFO COVERAGE: Global Assertion #4 exercised 1526839 times
INFO COVERAGE: Global Assertion #4 no failures

INFO COVERAGE: Global Coverage #4 exercised 3747 times
INFO COVERAGE: Global Assertion #5 exercised 1526839 times
INFO COVERAGE: Global Assertion #5 no failures

INFO COVERAGE: Global Coverage #5 exercised 3285 times
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Category O
Assertions Attempts Matches Vacuous Matches Incomplete

ltop read_ehci_split_as 1526844 3468 O 0 |
ltop.read_ohci_split_as 1526844 8726 O 0 |
ltop.write_ehci_split_as 1526844 3285 0 [0 |
|

|

top.write_ohci_split_as 1526844 8747 O 0
ltop.t1.arb_ehci_ohci_shci_as|[1526844 1467 1[0 IE
Category 0

Cover properties Attempts Matches Vacuous Matches Incomplete

'top read_ehci_split_cv 1526844 3468 0 [0 |
top.read_ohci_split_cv 1526844 8726 O 0 |
ftop.read_read_ov 1526844 7118 [0 1 |
top read_write_cv 1526844 6917 O [197 |
ltop.write_ehci_split_cv 1526844 8285 0 [0 |
|
|
|
|
|

ltop.write_ohci_split_cv 1526844 3747 0 [0
opite road ov 15BN FESSIN o
top write_write_cv 1526844 7252 O I
fop Tt o T Tt
top.t1.arb_ehci_ohci_shcl_cv|[1526844 | 467 [0

Figure 8 — Unified Report Generator HTML Coverage Reporting

0
0

This reporting mechanism explicitly adds the notion of required assertions for a particular
testcase. This method of reporting is used by S3 verification teams so that all functional coverage
can be reported to the simulation log file with standard INFO and ERROR messages without the
need for generating separate coverage databases. S3’s NanoFlow design environment contains
CGlI-based webscripts which are used to parse the log files to generate verification status
information for all the testcases relating to a design. The status of an entire chip verification
regression, sometimes numbering in the thousands of testcases, can then easily be monitored
from a single html web-page. Sample S3 NanoFlow web-script screenshots are shown in Figure
9. The percentage functional coverage field facilitates progress tracking and selecting the most
efficient testcases during the test suite development.
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NANOFLOW Verification Summary : Block uhu

Root directory : /projmanoflowfusers/panl fWOREK_FCOV/datafs3_feov_refl

Block verification status for : uhu

cPU Cvel Real Simulation Mrmgn Cmngr
Test Name  Memor e . Simulation Log File Date OK? uired?
¥ Time (pelk) TIme  |info |Warning Errer | Code | Fuetlonal Log Req
() (%)

test_contention  454M  S651s 5979737 00:14:27 | 0 2 0 NA 1005 test_contention sim.log '“"”; “'_-lif';: # pass PALSE
test_cohereni_ohch 450M 075 1816 a0:0001 | @ 2 0 MA 100%  fest_coherent_ohel sim log M“‘{“'_'Igf'g: B sy FALSE
test_coherent_ehei | 45.TM .65 1230 TR H T 2 1] A 100 iest_coherent_ehei sim log Ma'i“]_'li!:u: at FASS  FALSE

test_random | 450M 74335 3982416 00:12:30 0 2 0 MA 1007 test_randomsimlog M7 M3WSA pacs paLsE

test_interrupt 44.7M 513 17047 bo-gmos | 0 F] o Hia 100 test_interrupt sim bog Mn‘i“l;“;]: 3 pass | FALSE

(lobal verification status: PASS

|Block | Total Tests Golden Tests Passed |Other Tests Passed |Global P/F? |OK?
pcu |41 41 0 ['Ves :
tim |1 1 0 [Yes

L i o Fo |
uhu |5 5 o Yes

ieu |10 0 [10 Yes

Figure 9 — S3 NanoFlow CGI Webscript Verification Regression Reporting

6.0 Discussion of Results

Looking back at Table 2 it is clear that almost all the verification requirements are hit by the
test_contention general random test case. Only test_coherent_e/ohci and test_interrupt are
required to hit the remaining requirements and in fact these testcases represent only small
modifications to the basic testcase. This leads to an economy of effort in testcase development
i.e. once the basic verification environment has been constructed writing extra testcases is only a
small extra effort. In fact most of the effort in testcase generation goes into writing assertions and
ensuring they are correct.

Assertions are extremely useful for checking that certain stimuli conditions have occurred e.g.
the ehci_int_write_phase0..7_cv assertions are used to check that an EHCI core interrupt has
been generated during each possible address cycle of an 8 word AHB Split transaction.
Automatic reporting of coverage can be important when late changes to a design mean some
testcases no longer exercise some of the coverage points. Reporting ERROR messages when
required assertions have not been exercised ensures automatic checking of testcases.

6.1 Conclusions and Recommendations

At the start of this investigation a number of questions were posed. In this section we try to
answer these questions and outline any advantages and disadvantages of using a SystemVerilog
constrained random verification approach.
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1. Is there a large ramp up required for our verification engineers in switching to

SystemVerilog?

o We found it was possible to ramp up SystemVerilog competence in less than 2 weeks
without any prior knowledge of constrained random verification provided suitable
training with examples are used e.g. the Synopsys SystemVerilog QuickStart training
[3]. Previous exposure to OO techniques e.g. C++ or SystemC is definitely a help.

2. 1If our existing verification flow is resulting in first time right silicon is there a significant
advantage in switching to a constrained random flow (e.g. time-saving)?

o We found that the effort was approximately the same for the two methodologies
for the small set of requirements we were targeting. But as the number of
scenarios that can be hit with the same verification environment increases then
effort should start to reduce with a SystemVerilog environment.

3. Are existing CAD tools mature enough to support the SystemVerilog features we require?
o Synopsys VCS was easily able to handle this mixed SystemVerilog-VHDL
verification without any issues.

4. Is co-simulation with existing VHDL designs an issue?
o Synopsys VCS supports mixed language designs without any issues.

5. How important to constrained random verification is having a well defined verification
methodology ?

o A well defined methodology is extremely important. The testbench structure of
Figure 6 is quite distributed so it should follow a good template. For small designs
the RVM-lite methodology is sufficient. For larger designs the full RVM using the
RVM-base class standardizes the testbench environment using the best practices
incorporated in the VMM base classes based on many years of experience of

Vera.

6.2 Advantages and Disadvantages of SystemVerilog versus a VHDL Directed Approach

Advantages of SystemVerilog approach:

® One single reusable test environment.

e By default all tests are completely randomized.

e All requirements can be hit by constraining the environment. The VHDL environment
needed approximately 20 procedural directed test cases to hit the requirements fully.

e Automates cross-referencing requirements against testcases through use of assertions.
Can easily track progress to 100% functional coverage.

e There is a definite advantage in using completely randomized tests which may test
scenarios not thought off.

e Most checkers will be included in the environment for almost all tests unlike in the
directed test case where the checker may only be active for that particular directed test.

SNUG Europe 2006 27 VHDL to SystemVerilog



This has the advantage that wider coverage beyond the precise definition of the
verification requirements may be obtained.

Disadvantages:
e Must be aware that environment development takes longer but testcase development
effort will be less.

e [f directed tests are also to be written, as opposed to constrained directed tests, then the
environment must be designed at the outset to support these.

e [t is extremely important to review requirements in detail early on in environment
development to ensure that the verification environment is sufficient to allow all the
verification requirements to be exercised otherwise additional environments may be
required which may cost a lot of time to develop.

It is important to emphasis the S3 DUT audit methodology outlined in Section 3.1 as being
critical for good verification results in both directed and constrained random verification
approaches. The directed VHDL approach is completely dependent on the verification planning
as only coverage of the listed requirements is achieved. Verification planning is still important
for constrained random for measuring coverage results but constrained random has the bonus of
potentially hitting similar corner cases for free.
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