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ABSTRACT 

 
SystemVerilog has been accepted as an IEEE standard for which all the major CAD and IP 
vendors have announced support. Many observers view it as becoming a widely accepted 
industry standard verification language. 
 
It is now possible to build object-oriented and constrained random features into a verification 
environment without being locked into using one proprietary tool to run that environment. Many 
users previously deterred from committing to a proprietary solution, along with users of existing 
proprietary solutions, are seeing benefits in converting their environments to the new standard. 
 
This paper shows how a SystemVerilog test environment with re-usable components can be 
quickly set up and used to comprehensively test a USB Host Controller sub-system with a 
mixture of directed and constrained random test cases. The environment has been implemented 
to replace an existing VHDL testbench by a user with no previous SystemVerilog, OpenVera or e 
language experience. The paper describes a Synopsys Reference Verification Methodology 
(RVM) implementation, a first step towards the use of the ARM/Synopsys Verification 
Methodology Manual (VMM). 
 
A VHDL USB 2.0 Host Controller sub-system consisting of USB EHCI and OHCI AHB 
masters, DMA interface to embedded DRAM, buffering and arbitration logic, will be used as an 
example. 
 
Readers will learn about the basic concepts of SystemVerilog constrained random testing and 
how to quickly construct a test environment and simulate using VCS 2005.06. The paper also 
describes the use of SVA assertions to complement functional coverage results for the system.
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1.0 Introduction  
This paper documents an investigation into the feasibility and advantages of switching from 
using a directed VHDL/Verilog based verification flow to using a SystemVerilog constrained 
random environment. For the purposes of the investigation a USB 2.0 Host Sub-System in 
VHDL was selected as the Device Under Test (DUT). The device was previously verified by S3 
using a traditional VHDL testbench running directed testcases and worked 100% first time right 
in Silicon on an image processing System on Chip (SoC) [1]. This was considered a good 
candidate for the investigation as a number of common SoC elements are present in the design 
including: two AHB interfaces, a customized Leon processor bus interface, arbitration logic and 
a DMA interface to embedded DRAM.  
 
The objective of the investigation was to develop a SystemVerilog environment to cover the 
existing verification plan for the device and in particular to determine: 

1. Is there a large ramp up required for our verification engineers in switching to 
SystemVerilog?  

2. If our existing verification flow is resulting in first time right silicon is there a significant 
advantage in switching to a constrained random flow (e.g. time-saving)? 

3. Are existing CAD tools mature enough to support the SystemVerilog features we require? 
4. Is co-simulation with existing VHDL designs an issue? 
5. How important to constrained random verification is having a well defined verification 

methodology  ? 
 
 
2.0 The USB 2.0 Host Controller Sub-System (DUT) 
 

 

Figure 1 – USB Enabled SoC 
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A typical SoC with USB 2.0 host and device connectivity including on-chip PHY is shown in 
Figure 1. The USB host and device can be configured by a Leon CPU [1] through a low-speed 
CPU peripheral bus. USB data traffic, with rates up of to 480 Mbs in USB 2.0 High Speed mode, 
can be DMAed into the on-chip embedded DRAM via a separate high bandwidth DRAM data 
bus. The DRAM arbiter provides guaranteed quality of service in terms of bandwidth and access 
latency to all its requestors. For the USB connections this means that the SoC should never 
become a bottleneck as it will always be able to sink and source USB data at the rate of the 
external USB networks. 
 
 

 

Figure 2 – USB Sub-System Block Diagram 

 
The USB Controller Host Sub-System or UHU, the subject of this paper, is shown in more detail 
in Figure 2. The host core in the UHU, the ehci_ohci, is a USB2.0 compliant 3rd party Verilog IP 
core from Synopsys. It contains an Enhanced Host Controller Interface (EHCI) controller and an 
Open Host Controller Interface (OHCI) controller. The EHCI controller is responsible for all 
High Speed (HS) USB traffic. The OHCI controller is responsible for all Full Speed (FS) and 
Low Speed (LS) USB traffic. The multi-port PHY provides three downstream USB ports for the 
UHU. 
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In addition to the ehci_ohci host controller core the UHU also contains  
• a connection to the CPU peripheral bus 
• CPU configuration registers in uhu_cpu_regs_cpu 
• an AHB bridge to the ehci_ohci allowing its registers to be also configured by the CPU 
• a DMA manager, uhu_dma, connecting the ehci_ohci via a second AHB bridge to the 

high speed DRAM bus or DIU.  
 
The CPU interface is the master on its AHB interface to the ehci_ohci whereas the ehci_ohci is 
the master on the AHB interface to the DRAM DMA logic in uhu_dma.  
 
2.1.1 Verification Strategy 
 
The verification of the UHU is split into 2 parts: 

1. Exhaustive testing of the UHU CPU configuration and DRAM DMA logic by replacing 
the ehci_ohci by AHB master/slave BFMs. 

2. Complete testing of the UHU including the USB ehci_ohci host controller cores.  
 
This two-step verification strategy was adopted because exhaustive testing using the complete 
UHU is difficult since the USB host functionality is partitioned between the hardware UHU and 
software EHCI/OHCI Host Controller Driver stacks. The development effort for these Host 
Controller Drivers is considerable and the CPU MIPs requirements large so only simplified 
drivers were employed. With the simplified host controller drivers it was very difficult to hit all 
the DMA corner cases so separate testing of the DMA logic was employed. This paper describes 
the work required to verify the UHU DMA logic with the EHCI/OHCI cores replaced by AHB 
master/slave BFMs. 
 
2.1.2 Functionality to be Tested 

The subset of functionality to be tested as part of this investigation of SystemVerilog is shown in 
Table 1. 

Table 1 – UHU DMA logic Verification Requirements 

Point of 
Functionality 

 
Verification Requirement 

Read/Write Burst sizes 
F UHU.1.0 Verify read operation for different AHB burst sizes (1 -1024) for OHCI and EHCI masters. 
F UHU.1.1 Verify write operation for different AHB burst sizes (1 -1024) for OHCI and EHCI masters. 
F UHU.1.2 Verify different combinations of reads and writes i.e. read/read, read/write, write/write, 

write/read combinations. 
Arbitration 

F UHU.2.0 Verify AHB arbitration fairness between OHCI and EHCI masters.  
Read/Write Coherency 

F UHU.3.0 Verify read/write coherency for both OHCI and EHCI masters. 
AHB Split Response 

F UHU.4.0 Verify read operation using AHB split responses for OHCI and EHCI slaves.  
Verify reads split on crossing 256-bit  word boundary. 

F UHU.4.1 Verify write operation using AHB split responses for OHCI and EHCI slaves.  
Verify writes split on crossing 256-bit word boundary. 
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Interrupt Coherency 
F UHU.5.0 Verify for core interrupts any writes in local UHU buffer need to be flushed before interrupt is 

generated and no new transactions allowed until interrupt is generated.  
F UHU.5.1 Verify that any ongoing AHB write transfer is split when a core interrupt is generated and the 

split is completed when the buffer is flushed and the interrupt has been generated. 
 
These verification requirements need some further explanation of the UHU functionality: 
• Read/write burst sizes (F UHU.1.0/1) 

The USB maximum packet size can be up to 1024 bytes so the EHCI/OHCI cores may 
read or write packets in the range 1-1024 bytes.  

• Arbitration (F UHU.2.0) 
Both EHCI and OHCI are separate AHB masters to the DMA logic with a round-robin 
arbitration policy being implemented. Arbitration is won by the EHCI by default when 
there have been no previous requests. 

• Read/write coherency (F UHU.3.0) 
Read/write coherency is extremely important i.e. a read operation following a write 
operation to the same DRAM address must always read the data just written.  

• AHB Split Response (F UHU.4.0/1) 
In order to prevent long EHCI bursts locking out OHCI DRAM access and vice-versa 
AHB split response functionality has been implemented. When an AHB burst crosses a 
256-bit DRAM word boundary (the embedded DRAM word-size is 256-bits) the AHB 
access is split and an access from another master is allowed. In this way if both EHCI and 
OHCI request accesses of long lengths then the resulting accesses will be alternating 
bursts of 8x32-bit words or 256-bits by each of the EHCI and OHCI masters.  

• Interrupt coherency (F UHU.5.0/1) 
Interrupt coherency must also be guaranteed i.e. an interrupt must not be generated in the 
case of a USB IN transfer until the data has actually been written into the DRAM and 
therefore can be safely read by the CPU. 

 
 

3.0 The Existing VHDL Verification Environment   
 
3.1 Flow Overview 

The S3 verification methodology used to verify the device involved firstly the creation of a 
verification plan. This plan in turn contained tables of Verification Requirements such as those 
shown in Table 1 - bullet point lists of functionality to be covered by the verification test suite. A 
DUT audit by the verification team was used to generate the verification requirements. This audit 
took as input: the block specification, relevant standards, available verification IP, input from the 
block designer and the S3 block verification check list. The resulting requirements went through 
iterations of review with a view to capturing all the corner case operations where a non-
conformance might escape detection by the verification suite.  
 
Functional coverage was measured manually by review of the verification requirements versus 
the test suite. This was flagged as being very time consuming and was highlighted as an area 
where automation using assertions for coverage calculation could improve efficiency. Full 
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coverage was considered as met when all verification requirements were covered by the test suite 
and statement code coverage was 100% (our goal was 100% branch and statement code coverage 
but branch coverage was not available with the version of the code coverage tool we were using). 
 
Directed tests were written to cover the functionality described in the verification requirements. 
In all cases individual tests had to be written to hit the verification requirements, this again was a 
bottleneck in the process of closing out functional coverage. The directed tests were very 
procedural-like defining lists of CPU BFM and AHB BFM operations. All tests were self-
checking with AHB transactions checked by an AHB monitor. Some limited randomization was 
used in the generation of address and data values and delays. A total of 20 separate directed tests 
were required to completely verify the UHU functionality listed in Table 1. Developing these 
tests took a considerable amount of effort although the same testbench structure was used for all 
tests. 
 
3.2 Directed VHDL Verification Environment Overview 
 
3.2.1 USB DMA Logic VHDL Verification Environment 
 

 
 

Figure 3 – VHDL UHU DMA Logic Verification Environment 

The VHDL verification environment that was used is shown in Figure 3. This comprises the 
DUT (UHU) together with a CPU BFM, actual RTL for the DRAM arbiter (DIU) and AHB 
master/slave BFM’s replacing the EHCI/OHCI cores. This environment facilitated extensive 
directed testing of the UHU DMA and CPU interface logic. 
 
3.2.2 USB Top-Level Verification Environment 

As noted in Section 2.1.1, a second verification phase included complete testing of the UHU 
including the USB ehci_ohci host controller cores. The testbench is shown in Figure 4. The UHU 
requires a very complex device driver. The Synopsys task driven verification environment used 
to test the ehci_ohci core standalone was modified to work at UHU level. This includes a USB 
device model supplied by Synopsys. The testbench controls the driver models by means of 
transaction-level Verilog task calls. Because of the limited functionality of the device driver, and 



SNUG Europe 2006  VHDL to SystemVerilog 9 

also the limited functional coverage of the top-level testcases, it was necessary to exhaustively 
test the USB DMA buffer logic separately. 
 
 

 

Figure 4 – VHDL UHU Verification Environment 
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4.0 The SystemVerilog Verification Environment  
 

 

Figure 5 – RVM Testbench Structure 

 

The verification environment developed to allow SystemVerilog testing of the UHU is shown in 
Figure 6. This environment follows the conventions of the Synopsys RVM (Reference 
Verification Methodology) SystemVerilog methodology. The RVM is a structured methodology 
for object-oriented constrained random verification using SystemVerilog. The full RVM makes 
use of the ARM/Synopsys Verification Methodology Manual (VMM) [2]. The RVM contains 
guidelines, coding styles and base classes.  Here we implement an RVM-lite methodology which 
does not use the RVM base-classes. RVM-lite is a first step to the implementation of the full 
RVM. The RVM emphasizes a functional coverage driven verification methodology which 
matches our use of Verification Requirements 
 
A generic RVM testbench structure is shown in Figure 5 [3]. Testing is performed at the 
transaction level using a transaction generator called by the testcase, a checker which identifies 
transactions from the DUT, and a scoreboard to check their correctness. Drivers and monitors 
map the transactions to the pin-level of the DUT. Assertions check the low-level signaling of the 
DUT for correct behaviour. The SystemVerilog test environment developed for the UHU follows 
this RVM testbench structure. 
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4.1 SystemVerilog UHU Verification Environment Overview  

 

Figure 6 – SystemVerilog UHU Verification Environment 

 
The SystemVerilog UHU verification environment in Figure 6 shows the transaction generators 
(1 Leon and 2 AHB), read and write DRAM monitors and a scoreboard. The scoreboard checks 
that transactions on the AHB side result in correct DRAM reads and writes on the DRAM 
interface. SystemVerilog mailboxes are used to interface the generators with their drivers and to 
interface to the scoreboard. SystemVerilog interfaces are used at the DUT pin level for the AHB, 
Leon, interrupt and DRAM read and write pin I/O. The environment is described in more detail 
in the following sections. 
 
4.1.1 AHB Generator  

The AHB Generator creates bursts of AHB transactions. There are 2 AHB generators – 1 for the 
EHCI and 1 for the OHCI. The ahb_trans class is shown below. 
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The AHB transactions are all completely random i.e.  

o Random transaction type i.e. AHB READ, WRITE or IDLE 
o random 32-bit address 
o random 32-bit data  
o random burst length 
o random burst type 

  
Once randomly generated the bursts are posted by an AHB generator to a gen2mas_e/ohci 
mailbox where they will be read by the corresponding AHB master. The AHB generator also 
posts the count of the total number of AHB words generated to the scoreboard via a 
gen2scb_e/ohci mailbox. This is used by the scoreboard to ensure checking has been performed 
on all the generated AHB words.      
 
4.1.2 Object-oriented Class Structure 

The AHB Generator, similar to the other testbench components, follows an object-oriented class 
structure: 

• Objects are instantiated (actually handles to objects are instantiated) – in this case a 
random AHB transaction and mailboxes. 

• Methods are provided to perform operations on the objects.  
• A constructor function new performs initialization by allocating memory for the objects 

and initializing variables and connectivity e.g. of the mailboxes. 
• A task main has a loop which generates AHB transactions and posts them to the mailbox.  

 
The classes are self contained – they define both the data objects and the operations that can be 
performed on them. This makes them highly portable and reusable in other verification 
environments. These concepts seem new at first, from the background of directed VHDL and 
Verilog verification, but are easy enough to grasp especially if one has had any prior exposure to 
C++ or SystemC. 
 

parameter AHB_ADDR_WIDTH = 32; 
typedef bit [AHB_ADDR_WIDTH-1:0] ahb_addr_t; 
parameter AHB_DATA_WIDTH = 32; 
typedef bit [AHB_DATA_WIDTH-1:0] ahb_data_t; 
typedef enum {SINGLE, INCR, WRAP4, INCR4, WRAP8, INCR8, WRAP16, INCR16} ahb_burst_e; 
typedef enum {AHB_READ, AHB_WRITE, AHB_IDLE} ahb_trans_e; 
class ahb_trans; 

  rand ahb_addr_t addr; 
  rand ahb_data_t data; 
  rand ahb_burst_e burst; 
  rand ahb_trans_e transaction; 
  rand integer burstlength; 
  … …     
  function ahb_trans copy(); 
   … … 
  endfunction: copy 

endclass 
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4.1.3 AHB Master  

The AHB Master converts AHB READ, WRITE and IDLE transactions received via the 
gen2mas_e/ohci mailbox into cycle accurate address, data and control signals on the ahb_if 
interface connected to the DUT complying to the AHB protocol. SystemVerilog clocking blocks 
are used in the interfaces to create explicit synchronous timing domains. The AHB Master also 
posts the generated transactions into separate read and write mailboxes mas2scb_e/ohci_rd and 
mas2scb_e/ohci_wr where they can be read by the scoreboard. 
 
The master is a stripped down version of a full AHB master. Some points to note are: 

• The AHB master always implements an INCR burst type i.e. an incrementing burst of 
indeterminate length. This is because we want to test bursts in the range 1 to 1024. 
The test cases constrain the burst type to INCR. 

• A limitation of the AHB master used in this investigation is that it will only generate 
32-bit word transactions. So we test bursts in the range 1 to 1024 32-bit words rather 
than 1 to 1024 bytes but the principle remains the same. 

• The transfer type of the first access in a burst, the AHB htrans signal, is always 
NONSEQ for the first transfer in a burst and SEQ for subsequent transfers.  

• The AHB Master is designed to handle AHB split transactions. The AHB arbiter in 
the UHU will generate a split when the AHB address crosses a 256-bit DRAM word 

class ahb_gen; 
 

// Random AHB transaction 
rand ahb_trans rand_tr; 
 
//AHB Transaction mailbox 
mailbox gen2mas, gen2scb; 
   
… 
// Constructor 
function new(mailbox gen2mas, gen2scb, …); 
    this.gen2mas      = gen2mas; 
    this.gen2scb       = gen2scb; 
    rand_tr               = new; 
   … 
endfunction 
 
// Method aimed at generating transactions 
task main(); 
    while(!end_of_test()) 
    begin 
        // Wait & Get a transaction 
        rand_tr = get_transaction(); 
         … … 
        gen2mas.put(rand_tr);         
    end // while (!end_of_test()) 
endtask 

endclass 
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boundary. Recall from Section 2.1.2 “Functionality to be tested” that this is intended 
to allow equal access to the UHU for both EHCI and OHCI. 

 
4.1.4 Leon Generator 

The Leon generator is used to generate Leon READ and WRITE transactions to configure the 
DUT and to read back status. The transactions are posted to a mailbox gen2mas_leon where they 
can be read by the Leon Master. The leon_trans class is shown below. 
 

 
 
The Leon transaction address is defined as randc i.e. no values are repeated until all the values in 
the range have been generated. The Leon addresses are constrained within the testcase to include 
only the addresses of valid configuration registers. In the testcases we are only using Leon 
WRITE transactions to configure the DUT i.e. we are not reading back status. The Leon 
generator will generate Leon transactions until the maximum number of Leon transactions is 
reached, typically set as the number of registers to be configured.  
 
4.1.5 Leon Master 

The Leon Master converts Leon transactions received via its gen2mas_leon mailbox into cycle 
accurate address, data and control signals on the leon_if interface according to the AMBA APB-
like CPU bus protocol used on the SoC.  
 
4.1.6 DRAM Read and Write Monitors 

Each DRAM monitor is a reactive transactor i.e. it responds to a request on the DRAM interface 
with a randomized DRAM transaction. The dau_trans class is shown below. 

parameter LEON_ADDR_WIDTH = 12;  
typedef bit [LEON_ADDR_WIDTH-1:0] leon_addr_t; 
parameter LEON_DATA_WIDTH = 32;  
typedef bit [LEON_DATA_WIDTH-1:0] leon_data_t; 
typedef enum {LEON_READ, LEON_WRITE, LEON_IDLE} leon_trans_e; 
class leon_trans; 

  randc leon_addr_t addr; 
  rand leon_data_t data; 
  rand leon_trans_e transaction; 
  … …     
  function leon_trans copy(); 
  … … 
  endfunction: copy   

endclass 
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As the DRAM data bus is 64-bits wide and each DRAM transaction is 256-bits (recall the 
DRAM word size is 256-bits) the DRAM data element is a 4x64-bit array. The DRAM 
transaction contains randomized data and a randomized acknowledge delay after which the data 
and relevant control signals are driven on the DAU interface. The DRAM acknowledge delay is 
constrained within the monitors as follows: 
          s = tr.randomize() with {ack_delay > 4; ack_delay < 256;};  
 
The monitors post the DRAM transactions to the scoreboard mailboxes mon2scb for comparison 
with the data that is returned on the AHB interface.  The DRAM read and write protocols are 
shown in Figure 7. 
 

 

Figure 7 – DRAM Interface Protocol 

 
4.1.7 Scoreboard 

The scoreboard checks that writes on the AHB side are reflected as correct DRAM write accesses 
and that reads on the DRAM side are reflected as correct AHB read accesses. 
For writes the scoreboard stalls until a transaction has been posted in the mon2scb_dau_wr 
mailbox by the DRAM write monitor. When a transaction appears it looks to match the 
transaction address with the top-most element in each of the EHCI and OHCI master write-to-
scoreboard (mas2scb_e/ohci_wr) mailboxes. It does this by doing a try_peek into each of the 

parameter DAU_ADDR_WIDTH = 22; 
typedef bit [DAU_ADDR_WIDTH-1:5] dau_addr_t; 
parameter DAU_DATA_WIDTH = 64; 
typedef bit [DAU_DATA_WIDTH-1:0] dau_data_t; 
typedef enum {DAU_READ, DAU_WRITE} dau_trans_e; 
class dau_trans; 

  dau_addr_t addr; 
  dau_trans_e transaction; 
  rand dau_data_t data[4]; 
  rand integer ack_delay; 
  … …  
  function dau_trans copy(); 
  … … 
  endfunction: copy 

endclass 
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AHB master write-to-scoreboard mailboxes. Once a matching transaction address has been found 
then a get is performed and the data fields checked. Mismatches result in errors being generated. 
For reads the scoreboard stalls until a transaction has been posted in one of the EHCI and OHCI 
master read-to-scoreboard (mas2scb_e/ohci_rd) mailboxes. When a transaction appears it looks 
to match the transaction address with the top-most element in the mon2scb_dau_rd mailbox 
posted by the DRAM read monitor. It does this by doing a try_peek into the DRAM read monitor 
to scoreboard mailbox. Again once a matching transaction address has been found then a get is 
performed and the data fields checked. Mismatches result in errors being generated. 
A check is also performed to ensure that all words have been transmitted/received correctly using 
the count of the total number of AHB words generated read from the gen2scb_e/ohci mailboxes 
as noted in Section 4.1.1. 
  
4.1.8 Building the Environment 

The complete verification environment shown in Figure 6 is built in an object-oriented manner 
within the environment class. 
 

 

class environment; 
// Transactors 
leon_gen        gen_leon; 
ahb_gen         gen_ohci; 
… … 
// constructor function 
function new(… …); 
    gen_leon      = new(… …); 
    gen_ohci      = new(… …); 
    … … 
endfunction: new 
… … 
virtual task test(); 
    fork 

    gen_leon.main(); 
    gen_ohci.main(); 
    gen_ehci.main(); 

    join 
endtask: test 
virtual task post_test(); 
    fork 

      wait(gen_leon.ended.triggered); 
      wait(gen_ohci.ended.triggered); 
      wait(gen_ehci.ended.triggered); 
      wait(scb.ended.triggered); 

    join 
endtask: post_test 
 
task run(); 

    pre_test(); 
    test(); 
    post_test(); 

endtask: run 
endclass 
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The environment class instantiates handles to all the individual verification components. It has a 
constructor function which in turn calls the constructors of each component to initialize them and 
contains the tasks to invoke the methods of the testcase components. 
 
The AHB and Leon Generators loop generating transactions and posting them to mailboxes until 
the number of transactions defined in the testcase have been generated. The AHB Masters, Leon 
Master, DRAM monitors and scoreboards main() tasks consist of infinite loops which read or 
write to mailboxes. The mailboxes are the glue between the various components – they block 
when full or empty. The testcase is defined to end using the post_test() task when the generators 
have ended and when the scoreboard has completed checking the number of AHB words created 
by the generators. 
 
4.1.9 Constructing the Testbench 

The top-level module of the testbench instantiates both DUT and testcase with the connectivity 
defined using interfaces. The testcase then instaniates the environment class, calls its constructor 
and runs the test. 

 
 
The 5 testcases themselves are each described in separate files i.e.  

• test_contention.sv 
• test_random.sv 
• test_coherent_ehci.sv 
• test_coherent_ohci.sv 
• test_interrupt.sv. 

 
The testcases are compiled and run using the S3 Nanoflow make based design environment. 
 
 
5.0  Defining the Testcases and Satisfying the Verification Requirements 
The verification requirements of Table 1 are repeated in Table 2 but now cross-referenced against 
the testcases and the functional coverage assertions used to measure them. The following 
sections will discuss constraining the random testcases in order to hit these functional coverage 
points and capturing the coverage using assertions. 
 

program automatic test(ahb_if aif0,aif1,leon_if lif, dau_rd_if drif, dau_wr_if dwif, int_if intif); 
     `include "env/env.sv" // Top level environment 
      environment the_env; 

 
       initial begin 
                the_env = new(aif0,aif1,lif,drif,dwif);   

 the_env.run(); 
 $finish; 

       end 
endprogram 
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Table 2 – UHU DMA logic Verification Requirements with cross-referenced Testcases and Functional 
Coverage  

Point of  
Functionality 

 
Verification Requirement 

Test 
Case 

 
Functional Coverage 

Read/Write Burst sizes 
F UHU.1.0 Verify read operation for different AHB burst sizes 

(1 -1024) for OHCI and EHCI masters. 
All Covergroup ahb_cov 

F UHU.1.1 Verify write operation for different AHB burst sizes 
(1 -1024) for OHCI and EHCI masters. 

All Covergroup ahb_cov 

F UHU.1.2 Verify different combinations of reads and writes 
i.e. read/read, read/write, write/write, write/read 
combinations. 

All write_write_cv 
write_read_cv 
read_write_cv 
read_read_cv 

Arbitration 
F UHU.2.0 Verify AHB arbitration fairness between OHCI and 

EHCI masters.  
contention 

 
arb_cv 

arb_ehci_ohci_ehci_as 
arb_ehci_ohci_ehci_cv 

Read/Write Coherency 

F UHU.3.0 Verify read/write coherency for both OHCI and 
EHCI masters. 

coherent_ohci 
 

coherent_ehci  
 

ahb0_write_read_diu_as 
ahb0_write_read_diu_as 
ahb1_write_read_diu_as 
ahb1_write_read_diu_as 

AHB Split Response 
F UHU.4.0 Verify read operation using AHB split responses for 

OHCI and EHCI slaves.  
Verify reads split on crossing 256-bit  word 
boundary. 

contention 
random 
interrupt 

read_ohci_split_as 
read_ohci_split_cv 
read_ehci_split_as 
read_ehci_split_cv 

F UHU.4.1 Verify write operation using AHB split responses 
for OHCI and EHCI slaves.  
Verify writes split on crossing 256-bit word 
boundary. 

contention 
random 
interrupt 

write_ohci_split_as 
write_ohci_split_cv 
write_ehci_split_as 
write_ehci_split_cv 

Interrupt Coherency 
F UHU.5.0 Verify for core interrupts any writes in local UHU 

buffer need to be flushed before interrupt is 
generated and no new transactions allowed until 
interrupt is generated.  

interrupt 

F UHU.5.1 Verify that any ongoing AHB write transfer is split 
when a core interrupt is generated and the split is 
completed when the buffer is flushed and the 
interrupt has been generated. 

interrupt 

ehci_int_as  
ehci_int_cv  
ohci_int_as  
ohci_int_cv  
smi_int_as  
smi_int_cv  

ehci_int_write_phase0..7_cv 
ehci_int_read_phase0..7_cv 
ohci_int_write_phase0..7_cv 
ohci_int_read_phase0..7_cv 
smi_int_write_phase0..7_cv 
smi_int_read_phase0..7_cv 

 
5.1 Constraining the Testcases 

There are two general testcases - test_contention and test_random which exercise the majority of 
the verification requirements. Three more specific testcases test_interrupt, test_coherent_ehci, 
test_coherent_ohci target the specific interrupt and data coherency verification requirements.  
 
The general approach is to add constraints to the completely randomized verification 
environment in order to hit the verification requirements. Beyond adding extra constraints to 



SNUG Europe 2006  VHDL to SystemVerilog 19 

each testcase the previously constructed verification environment is used in each testcase without 
modification. This leads to great productivity gains when writing testcases. 
 
5.1.1 Test_contention 

This is a test where both AHB masters attempt AHB READ and AHB WRITE transactions at the 
same time. The burst length of each transaction is in the range 1 to 1024. 
 
To set up this testcase the AHB and Leon generators need to be suitably constrained. We have 
done this by extending the AHB and Leon base classes within the testcase. 
 
Class my_leon_gen extends the Leon generator class so that Leon is constrained to only write to 
2 particular configuration register addresses (32'h1C, 32'h20) with data 32'h11. The 2 Leon 
writes correspond to enabling AHB arbitration for both EHCI and OHCI (address 32`h1C) and 
enabling DRAM access for both read and write transactions (32’h20). The extended 
my_leon_gen class is shown below. As noted previously, the Leon address is randomized with 
the randc function which cycles through each of the 2 addresses. This is a good example of a 
random verification environment being constrained to produce directed testcase functionality. 
 

 
 
Class my_ahb_gen extends the AHB generator class so that the transactions are constrained to be 
READs and WRITEs of burst lengths between 1 and 1024. The extended class is shown below. 
The constraint on the upper address bits is to ensure the address is within the 20 Mbit range that 
the USB host controller can process. 
 

class my_leon_gen extends leon_gen; 
    … 
  // Constraints applied here  
  function leon_trans get_transaction(); 
    int s; 
    rand_tr = new(); 
    s = rand_tr.randomize() with {addr inside {32'h1C, 32'h20};transaction == LEON_WRITE; data  == 32'h11;}; 
    if (!s) 
      begin 
        $display("leon_trans::randomize failed"); 
        $finish; 
      end 
    get_transaction = rand_tr; 
  endfunction 
endclass: my_leon_gen 
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The testcase then instantiates and calls the constructors for the environment and the customized 
generators. The constructor calls for each of the generators set the number of transactions to 
generate for each. The environment run method is then called to start the testcase. 
 

 
5.1.2 Test_random 

This testcase is identical to test_contention except the AHB generators create IDLE transactions 
in addition to AHB READ and AHB WRITE transactions. The constraint in class my_ahb_gen 
becomes 

class my_ahb_gen extends ahb_gen; 
  …   
  // Constraints applied here  
  function ahb_trans get_transaction(); 
    int s; 
    rand_tr = new(); 
    s = rand_tr.randomize() with {addr[31:22] == 10'b0100000000; burstlength > 0;  burstlength < 1025;                   
 burst == INCR; transaction inside {AHB_WRITE,AHB_READ};};     
    if (!s) 
      begin 
        $display("ahb_trans::randomize failed"); 
        $finish; 
      end 
    get_transaction = rand_tr; 
  endfunction 
endclass: my_ahb_gen 
 

// Top level environment 
environment the_env; 
 
// Instanciate the customized generators 
my_leon_gen my_leon_generator; 
my_ahb_gen my_ehci_generator, my_ohci_generator; 
 
initial begin 

  // Instantiate the top level 
  the_env = new(aif0,aif1,lif,drif,dwif); 
   
  // Plug the new generators 
  my_leon_generator = new(the_env.gen2mas_leon, 2, 1); 
  the_env.gen_leon  = my_leon_generator; 
 
  my_ehci_generator = new(the_env.gen2mas_ehci, 100, 1); 
  the_env.gen_ehci  = my_ehci_generator; 
   
  my_ohci_generator = new(the_env.gen2mas_ohci, 100 1); 
  the_env.gen_ohci  = my_ohci_generator; 
 
  // Kick off the test now 
  the_env.run() 
  $finish; 

end 
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s = rand_tr.randomize() with {addr[31:22] == 10'b0100000000; burstlength > 0;  burstlength < 1025; burst == 

INCR;  transaction inside {AHB_IDLE, AHB_WRITE,AHB_READ};}; 
    
Since the IDLE transactions are also generated with random burstlengths this testcase exercises 
the DUT with varying IDLE gaps between AHB transactions. 

 

5.1.3 Test_coherent_e/ohci 

The read/write data coherency tests are constrained using SystemVerilog imply statements to 
generate AHB_WRITE/AHB_READ transaction pairs with a fixed burst length of 8 to avoid 
AHB SPLIT transactions. For each AHB_WRITE/AHB_READ transaction pair we expect to see 
a DRAM write operation followed by a DRAM read operation in that order for coherency to be 
maintained. 

 
 

5.1.4 Test_interrupt 

The interrupt test is similar to the test_contention but also generates core interrupt events to the 
UHU DMA logic at random times. 
 

class my_ahb_gen extends ahb_gen; 
     
int ahb_tr_cnt = 0; 
 
// Constructor 
function new(mailbox gen2mas=null, gen2scb=null, int max_trans_cnt, bit verbose); 
    super.new(gen2mas, gen2scb, max_trans_cnt, verbose); 
endfunction 
 
// Constraints applied here  
function ahb_trans get_transaction(); 
    int s; 
    rand_tr = new(); 
    s = rand_tr.randomize() with 
        {     
            ahb_tr_cnt==0  ->    {addr[31:22] == 10'b0100000000;  
                                addr[4:0] == 5'b00000 ; 
                                burstlength == 8; burst == INCR; 
                                transaction == AHB_WRITE; 
                                } 
            ahb_tr_cnt==1  ->    {addr[31:22] == 10'b0100000000;  
                                addr[4:0] == 5'b00000 ; 
                                burstlength == 8; burst == INCR; 
                                transaction == AHB_READ; 
                                } 
        }; 
    if (ahb_tr_cnt == 0)  ahb_tr_cnt = 1; else ahb_tr_cnt = 0; 
   … … 
endfunction 
endclass: my_ahb_gen 
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5.2 Capturing Functional Coverage using SystemVerilog Assertions  

The verification requirements of Tables 1 and 2 were captured using SystemVerilog assertions. 
Assertions are very good at capturing temporal relationships. A SystemVerilog covergroup was 
also used for capturing the AHB burstlengths generated and ensuring that they were distributed 
among various bins across the burstlength range of 1 to 1024. Cross coverage of the burstlength 
bins against the transaction type (AHB_READ, AHB_WRITE) was used in order to satisfy the 
verification requirements F UHU.1.0/2.0 of Tables 1 and 2. 
 
Two examples of the use of assertions in capturing functional coverage of verification 
requirements are explored here. Table 3 shows verification requirement F.UHU.4.0 for the case 
of OHCI AHB Split response and verification requirements F UHU.5 for EHCI core interrupt 
coherency. 
 

Table 3 – Selected UHU DMA logic Verification Requirements  

Point of  
Functionality 

 
Verification Requirement 

 
TestCase 

Functional 
Coverage 

AHB Split Response 
F UHU.4.0 Verify read operation using AHB split responses for OHCI slave.  

Verify reads split on crossing 256-bit word boundary. 
contention   

random 
interrupt    

read_ohci_split_as 
read_ohci_sp 

Interrupt Coherency 
F UHU.5.0 Verify for core interrupts any writes in local UHU buffer need to 

be flushed before interrupt is generated and no new transactions 
allowed until interrupt is generated.  

interrupt 

F UHU.5.1 Verify that any ongoing AHB write transfer is split when a core 
interrupt is generated and the split is completed when the buffer is 
flushed and the interrupt has been generated. 

interrupt 

ehci_int_as  
ehci_int_cv  

 

 
 
5.2.1 Example 1 - F.UHU.4.0 OHCI AHB READ Split Response 

 
For this example a sequence is defined for crossing a 256-bit AHB address boundary which 
corresponds to a change in AHB address bit 5. Then there are two properties - assert and cover 

//assertions to check AHB Split on crossing 256-bit word boundary (corresponds to change in address bit 5);  
sequence  ohci_cross_seq;   
     (`AHB0.haddr[5] !=  $past (`AHB0.haddr[5]); 
endsequence 
 
read_ohci_split_as :  assert property (@(posedge pclk) 
             $rose(`AHB0.hgrant) ##1 ((`AHB0.htrans[1] == 1) and !`AHB0.hwrite) 
             ##[0:7]  ohci_cross_seq  |=>   
             ##[0:$] `AHB0.hreq ##[0:2] (`AHB0.hresp == 2'b11)) check_assert[0][6]++; 

else check_assert[1][6]++;  
 
read_ohci_split_cv : cover  property (@(posedge pclk) 
  $rose(`AHB0.hgrant) ##1 ((`AHB0.htrans[1] == 1) and !`AHB0.hwrite)    

 ##[0:7]  ohci_cross_seq  
 ##[0:$] `AHB0.hreq ##[0:2] (`AHB0.hresp == 2'b11)) check_assert[2][6]++; 
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which are checked throughout the simulation. With this design the AHB hgrant signal always 
asserts 1 cycle before the start of the AHB READ or WRITE transaction. 
 
The assert property is used as a checker to ensure that every occurrence of the antecedent (the 
sequence before the “|=>” implication operator) is followed by the sequence after the implication 
operator. Here the antecedent corresponds to finding such a 256-bit address crossing within 8 
cycles of identifying an AHB read response (we expect bursts of length 1 to 8 before a split). The 
assert property then checks that an AHB Split response always follows (`AHB0.hresp == 2'b11) 
the antecedent and will give a message to the simulator log file in the case of a failure.  
 
The cover property is used to monitor the number of times the complete sequence has occurred in 
the simulation. The coverage is reported in the log file at the end of the simulation e.g. the 
simulator coverage report for test_contention is shown below. 
 

 
 
 
5.2.2 Example 2 -  F UHU.5 for EHCI Core Interrupt Coherency 

A second example of the use of assertions for functional coverage is the testing of interrupt 
coherency for the EHCI core interrupt to satisfy the verification requirements of Table 3. Here 
again there are both assert and cover properties. These properties are checked if the signals 
assert_ehci_int and cover_ehci_int are high and the DUT has not yet asserted its interrupt output 
uhu_icu_irq. The signals assert_ehci_int and cover_ehci_int are asserted in the testbench when 
an EHCI core interrupt occurs during an AHB WRITE. If these conditions are satisfied then the 
sequence ehci_int_seq is checked to see whether it has occurred.  
 
ehci_int_seq concisely describes the verification requirements that following a core interrupt 
during an AHB WRITE the following sequence must occur 

• an  AHB Split i.e. (`AHB0.hresp == 2'b11), 
• followed by a DRAM write i.e. a buffer flush (4 consecutive assertions of 

uhu_diu_wvalid according to the DRAM write protocol of Figure 7) , 
• followed by the DUT asserting its interrupt output  uhu_icu_irq. 

 and that 
• no AHB grant occurs until uhu_icu_irq assertion  

i.e. no further AHB transactions are allowed until the buffer has been flushed and the interrupt 
generated. 

"hdl/top.v", 161: top.write_write_cv, 1526844 attempts, 7252 match, 0 vacuous match 
"hdl/top.v", 162: top.write_read_cv, 1526844 attempts, 7253 match, 0 vacuous match 
"hdl/top.v", 163: top.read_write_cv, 1526844 attempts, 6917 match, 0 vacuous match 
"hdl/top.v", 164: top.read_read_cv, 1526844 attempts, 7113 match, 0 vacuous match 
"hdl/top.v", 184: top.write_ohci_split_cv, 1526844 attempts, 3747 match, 0 vacuous match 
"hdl/top.v", 186: top.write_ehci_split_cv, 1526844 attempts, 3285 match, 0 vacuous match 
"hdl/top.v", 189: top.read_ohci_split_cv, 1526844 attempts, 3726 match, 0 vacuous match 
"hdl/top.v", 191: top.read_ehci_split_cv, 1526844 attempts, 3468 match, 0 vacuous match 
"tests/test_contention.sv", 146: top.t1.arb_cv, 1526844 attempts, 10 match, 0 vacuous match 
"tests/test_contention.sv", 154: top.t1.arb_ehci_ohci_ehci_cv, 1526844 attempts, 467 match, 0 vacuous match 
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5.3 Reporting the Results 

In addition to reporting assertion failures and coverage information to log files the Synopsys 
Unified Report Generator can collate the functional coverage results across multiple testcases 
and generate html reports. These reports can also include code-coverage results as well as 
functional coverage. An example is shown in Figure 8. 
 
The reader will have noticed the presence of action blocks on both the assert and cover 
statements of Section 5.2. These capture the number of times an assertion has succeeded or failed 
and the number of times a coverage point has been hit. At the end of the test ERROR messages 
(and corresponding INFO messages) are output to indicate if an assertion failed or if the assertion 
and coverage points were never exercised.  
 
 

//check if external interrupt event and AHB write in progress that an AHB split occurs 
ehci_int_as : assert property (@(posedge top.pclk)  

(assert_ehci_int && !top.intif.uhu_icu_irq) |->  
ehci_int_seq)   test_check_assert[0][0]++; else test_check_assert[1][0]++; 
 

ehci_int_cv : cover property (@(posedge top.pclk)  
(cover_ehci_int && !top.intif.uhu_icu_irq)  
##0 ehci_int_seq)  test_check_assert[2][0]++; 
 

sequence  ehci_int_seq; 
    //AHB split followed by DIU write followed by uhu_icu_irq assertion  
    //AND no AHB grant occurs until uhu_icu_irq assertion 
     ((`AHB0.hresp == 2'b11)  

##[1:$] top.dwrif.dau_cb.uhu_diu_wvalid ##1 top.dwrif.dau_cb.uhu_diu_wvalid [*3]  
  ##1 (!top.dwrif.dau_cb.uhu_diu_wvalid throughout  !top.intif.uhu_icu_irq [*0:$]) 

##1 top.intif.uhu_icu_irq)  
and  
 ((`AHB0.hresp == 2'b11)   
##1 (!`AHB0.hgrant throughout  !top.intif.uhu_icu_irq [*0:$]) 
##[1:$] top.intif.uhu_icu_irq  
##[0:$] `AHB0.hgrant);  

endsequence 
 

INFO COVERAGE: Global Coverage           #0 exercised        7252 times 
INFO COVERAGE: Global Coverage           #1 exercised        7253 times 
INFO COVERAGE: Global Coverage           #2 exercised        6917 times 
INFO COVERAGE: Global Coverage           #3 exercised        7113 times 
INFO COVERAGE: Global Assertion           #4 exercised     1526839 times 
INFO COVERAGE: Global Assertion           #4 no failures 
INFO COVERAGE: Global Coverage           #4 exercised        3747 times 
INFO COVERAGE: Global Assertion           #5 exercised     1526839 times 
INFO COVERAGE: Global Assertion           #5 no failures 
INFO COVERAGE: Global Coverage           #5 exercised        3285 times 
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Figure 8 – Unified Report Generator HTML Coverage Reporting 

 
This reporting mechanism explicitly adds the notion of required assertions for a particular 
testcase. This method of reporting is used by S3 verification teams so that all functional coverage 
can be reported to the simulation log file with standard INFO and ERROR messages without the 
need for generating separate coverage databases. S3’s NanoFlow design environment contains 
CGI-based webscripts which are used to parse the log files to generate verification status 
information for all the testcases relating to a design. The status of an entire chip verification 
regression, sometimes numbering in the thousands of testcases, can then easily be monitored 
from a single html web-page. Sample S3 NanoFlow web-script screenshots are shown in  Figure 
9. The percentage functional coverage field facilitates progress tracking and selecting the most 
efficient testcases during the test suite development. 
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Figure 9 – S3 NanoFlow CGI Webscript Verification Regression Reporting 

 

6.0 Discussion of Results 
Looking back at Table 2 it is clear that almost all the verification requirements are hit by the 
test_contention general random test case. Only test_coherent_e/ohci and test_interrupt are 
required to hit the remaining requirements and in fact these testcases represent only small 
modifications to the basic testcase. This leads to an economy of effort in testcase development 
i.e. once the basic verification environment has been constructed writing extra testcases is only a 
small extra effort. In fact most of the effort in testcase generation goes into writing assertions and 
ensuring they are correct.  
 
Assertions are extremely useful for checking that certain stimuli conditions have occurred e.g. 
the ehci_int_write_phase0..7_cv assertions are used to check that an EHCI core interrupt has 
been generated during each possible address cycle of an 8 word AHB Split transaction. 
Automatic reporting of coverage can be important when late changes to a design mean some 
testcases no longer exercise some of the coverage points. Reporting ERROR messages when 
required assertions have not been exercised ensures automatic checking of testcases.  
 
 
6.1 Conclusions and Recommendations 

At the start of this investigation a number of questions were posed. In this section we try to 
answer these questions and outline any advantages and disadvantages of using a SystemVerilog 
constrained random verification approach.  
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1. Is there a large ramp up required for our verification engineers in switching to 

SystemVerilog?  
o We found it was possible to ramp up SystemVerilog competence in less than 2 weeks 

without any prior knowledge of constrained random verification provided suitable 
training with examples are used e.g. the Synopsys SystemVerilog QuickStart training 
[3]. Previous exposure to OO techniques e.g. C++ or SystemC is definitely a help. 

 
2. If our existing verification flow is resulting in first time right silicon is there a significant 

advantage in switching to a constrained random flow (e.g. time-saving)? 
o We found that the effort was approximately the same for the two methodologies 

for the small set of requirements we were targeting. But as the number of 
scenarios that can be hit with the same verification environment increases then 
effort should start to reduce with a SystemVerilog environment. 

 
3. Are existing CAD tools mature enough to support the SystemVerilog features we require? 

o Synopsys VCS was easily able to handle this mixed SystemVerilog-VHDL 
verification without any issues. 

 
4. Is co-simulation with existing VHDL designs an issue? 

o Synopsys VCS supports mixed language designs without any issues. 
 

5. How important to constrained random verification is having a well defined verification 
methodology ? 

o A well defined methodology is extremely important. The testbench structure of 
Figure 6 is quite distributed so it should follow a good template. For small designs 
the RVM-lite methodology is sufficient. For larger designs the full RVM using the 
RVM-base class standardizes the testbench environment using the best practices 
incorporated in the VMM base classes based on many years of experience of 
Vera. 

 
6.2 Advantages and Disadvantages of SystemVerilog versus a VHDL Directed Approach 
 
Advantages of SystemVerilog approach: 
 

• One single reusable test environment. 
• By default all tests are completely randomized. 
• All requirements can be hit by constraining the environment. The VHDL environment 

needed approximately 20 procedural directed test cases to hit the requirements fully. 
• Automates cross-referencing requirements against testcases through use of assertions. 

Can easily track progress to 100% functional coverage. 
• There is a definite advantage in using completely randomized tests which may test 

scenarios not thought off. 
• Most checkers will be included in the environment for almost all tests unlike in the 

directed test case where the checker may only be active for that particular directed test. 
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This has the advantage that wider coverage beyond the precise definition of the 
verification requirements may be obtained. 

 
Disadvantages: 

• Must be aware that environment development takes longer but testcase development 
effort will be less. 

• If directed tests are also to be written, as opposed to constrained directed tests, then the 
environment must be designed at the outset to support these. 

• It is extremely important to review requirements in detail early on in environment 
development to ensure that the verification environment is sufficient to allow all the 
verification requirements to be exercised otherwise additional environments may be 
required which may cost a lot of time to develop. 

 
It is important to emphasis the S3 DUT audit methodology outlined in Section 3.1 as being 
critical for good verification results in both directed and constrained random verification 
approaches. The directed VHDL approach is completely dependent on the verification planning 
as only coverage of the listed requirements is achieved. Verification planning is still important 
for constrained random for measuring coverage results but constrained random has the bonus of 
potentially hitting similar corner cases for free.  
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